MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway

نویسندگان

  • Xue Zhou
  • Dongfeng Xian
  • Jiehua Xia
  • Ying Tang
  • Wenda Li
  • Xiaohui Chen
  • Zhibin Zhou
  • Dihan Lu
  • Xia Feng
چکیده

The commonly used inhalation anesthetic, sevoflurane, has been previously demonstrated to induce apoptosis in the developing brain; however, the underlying molecular mechanisms remain largely unknown. MicroRNAs (miRNAs) serve important roles in multiple physiological/pathological processes, such as cell death and survival. In the present study, the miRNA sequence that was most closely associated with sevoflurane‑induced apoptosis in the hippocampus of neonatal rat brains was identified. Seven‑day‑old Sprague Dawley rats were first exposed to 2.3% sevoflurane for 6 h. Hippocampal brain tissues were harvested at 6 h following sevoflurane exposure. Cleaved caspase‑3 levels were examined using an immunofluorescence assay. Alterations in miRNA expression were assessed by microarray analysis and reverse transcription-quantitative polymerase chain reaction. The protein levels of p53, phosphorylated (p)‑p53, B-cell lymphoma-2 (Bcl-2) and Bax were assessed by western blot analysis. Sevoflurane exposure significantly increased the levels of cleaved caspase‑3 in the hippocampus. In addition, among the 688 miRNAs that were observed to be expressed in the hippocampus, sevoflurane exposure altered the expression levels of 266 miRNAs. Among these differentially expressed miRNAs, eight were significantly upregulated and one (miRNA‑34c) was significantly downregulated following sevoflurane exposure. Bioinformatics analyses indicated the miRNA‑34c was a direct downstream target of p53. Sevoflurane exposure induced significant alterations in the level of p‑p53, Bcl‑2 and Bax in the hippocampus of neonatal rats. In conclusion, the results of the present study suggest that miRNA‑34c may be regulated by p53 and is involved in sevoflurane‑induced neural apoptosis in the hippocampus of developing rat brains, potentially via the mitochondrial pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

Schizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration

Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017